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ABSTRACT

The problem of recovering signals from the Short-Time
Fourier Transform (STFT) magnitude is of paramount impor-
tance in many areas of engineering and physics. This problem
has received a lot of attention over the last few decades, but
not much is known about conditions under which the STFT
magnitude is a unique signal representation. Also, the recov-
ery techniques proposed by researchers are mostly heuristic
in nature. In this work, we first show that almost all signals
can be uniquely identified by their STFT magnitude under
mild conditions. Then, we consider a semidefinite relaxation-
based algorithm and provide the first theoretical guarantees
for the same. Numerical simulations complement our theo-
retical analysis and provide many directions for future work.

Index Terms— Short-Time Fourier Transform magni-
tude, unique signal representation, semidefinite relaxation.

1. INTRODUCTION

Signal recovery from the magnitude of the Fourier transform
is known as phase retrieval. This recovery problem occurs in
many fields, such as X-ray crystallography [1], astronomical
imaging [2], speech recognition [3], computational biology
[4] and blind channel estimation [5]. A considerable amount
of work has been done by researchers (see [6, 7] for classic
methods), a recent survey can be found in [8].

We consider the phase retrieval problem for discrete 1D
real signals. In this case, it is well known that the mapping
from signals to their Fourier transform magnitude is not one-
to-one. In order to overcome this issue, researchers have tried
various methods which can be broadly classified into two cat-
egories: (i) additional prior information (e.g., sparsity) [9–14]
(ii) additional measurements [15–17].

In many signal processing applications, it is natural to
define the Short-Time Fourier Transform (STFT) instead of
the Fourier transform. In speech processing, the STFT mag-
nitude is often transformed and the recovery of the trans-
formed speech is essentially an STFT phase retrieval prob-
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lem [18, 19]. In optics, this problem occurs in frequency re-
solved optical gating (FROG), which is a general method for
measuring ultrashort laser pulses. Recovery of the pulse from
its FROG trace involves STFT phase retrieval [20]. Ptychog-
raphy [21], along with advances in detectors and computing
have resulted in X-ray, optical and electron microscopy with
increased spatial resolution without the need for advanced
lenses. This procedure also involves STFT phase retrieval.

In this work, we explore the STFT phase retrieval prob-
lem. Our contribution is two-fold:

(i) Uniqueness guarantees: Researchers have previously
explored deterministic conditions under which distinct sig-
nals cannot have the same STFT magnitude. However, ei-
ther a lot prior information on the signal is assumed in order
to provide the guarantees or the guarantees are very limited.
For instance, the guarantees provided in [18] require the exact
knowledge of a considerable portion of the underlying signal.
In [22], guarantees are provided for the setup in which adja-
cent short-time sections differ in only one location.

These limitations are primarily due to a small number
of adversarial signals which cannot be identified from their
STFT magnitude. In this work, in contrast, we develop con-
ditions under which the STFT magnitude is a unique signal
representation almost surely. We show that almost all signals
can be uniquely identified from their STFT magnitude if ad-
jacent short-time sections overlap (Theorem 3.1).

(ii) Provable recovery algorithm: Researchers have devel-
oped efficient iterative algorithms to solve this problem based
on theoretical grounds (Griffin-Lim [23], GESPAR [22]).
While these algorithms work well in practice, they do not
have provable recovery guarantees. Inspired by the suc-
cess of convex relaxation-based techniques in solving certain
problems provably [16, 24, 25], [26] proposed the use of a
convex program to solve the STFT phase retrieval problem.
In this work, we provide the first theoretical guarantees for
the convex relaxation-based STFT phase retrieval algorithm
(Theorem 4.1).

This paper is organized as follows. In Section 2, we math-
ematically formulate the STFT phase retrieval problem and
establish the notation. Sections 3 and 4 contain the unique-
ness guarantees and the recovery algorithm respectively. Nu-
merical simulations are provided in Section 5.
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2. PROBLEM SETUP

Let x = (x[0], x[1], ..., x[N − 1]) be a discrete-time real sig-
nal of length N and w = (w[0], w[1], ..., w[W − 1]) be a
window of length W . The STFT with respect to the window
w, denoted by Yw, can be defined as follows:

Yw[m, k] =

N−1∑
n=0

x[n]w[mL− n]e−j2πkn/N (1)

for 0 ≤ k ≤ N − 1 and 0 ≤ m ≤ M − 1, where L is
the separation in time between adjacent short-time sections
and M = bN+W−1

L c is the number of short-time sections
considered. Yw is an N × M matrix, the mth column of
which can be viewed as the N -DFT of the signal obtained by
multiplying the signal x with the flipped and mL time-shifted
window w.

The STFT phase retrieval problem can be mathematically
stated as

find x (P)

s.t. |Yw[m, k]| =

∣∣∣∣∣∣
N−1∑
n=0

x[n]w[mL− n]e−j2πkn/N

∣∣∣∣∣∣
for 0 ≤ k ≤ N − 1 & 0 ≤ m ≤M − 1.

Trivial ambiguities: The Fourier phase retrieval problem
has three trivial ambiguities: global sign, time-shift and time-
reversal [9,14]. In other words, signals which differ from each
other only by a global sign, time-shift and/or time-reversal
cannot be distinguished from each other from their Fourier
transform magnitude. In the STFT phase retrieval problem,
the global sign of the signal cannot be recovered. However,
time-shift and time-reversal ambiguities can be resolved for
some choices of w, W and L.

We define the following notations for convenience:

• x is nowhere-vanishing if {x[n] 6= 0: n ∈ [0, N − 1]}.
w is nowhere-vanishing if {w[n] 6= 0: n ∈ [0,W−1]}.

• w̃m is the signal obtained by shifting the flipped win-
dow by mL time slots (it has non-zero entries in the
region [mL−W + 1,mL]).

• � is the Hadamard product operator (entrywise multi-
plication of two same-length objects).

• tm and Tm denote the locations of the first and the last
non-zero entries of {x� w̃m} for 0 ≤ m ≤M − 1.

• ≡ implies equality up to a sign.

3. UNIQUE RECOVERY

In this section, we provide conditions under which (P) almost
always has a unique solution. We use a technique commonly

known as dimension counting [27]. Our arguments can be
summarized as follows: the set of all signals x of length N
can be mapped to RN , which is a vector space of dimension
N . The signals in this set which cannot be uniquely repre-
sented by their STFT magnitude (the set of violations) can be
viewed as solutions of a bilinear system of equations (Lemma
3.1). Using this property, we show that the set of violations
is a manifold of dimension strictly less than N under mild
conditions (Lemma 3.2). Since the set of violations, i.e., the
set of signals which cannot be uniquely represented by their
STFT magnitude, is measure zero with respect to the set of
all signals, almost all signals can be uniquely represented by
their STFT magnitude.

Theorem 3.1. Almost all signals can be uniquely recovered
(up to global sign) from their STFT magnitude if

1. L < W ≤ N/2

2. w is nowhere-vanishing.

Proof. The set of signals x which are not nowhere-vanishing
is a manifold of dimension strictly less than N . We dis-
card these signals (equivalent to classifying them as non-
recoverable) and consider only nowhere-vanishing signals.

In Lemma 3.1, we characterize the set of nowhere-
vanishing signals that cannot be uniquely identified by their
STFT magnitude. Using the aforementioned characterization,
we show in Lemma 3.2 that almost all nowhere-vanishing sig-
nals are such that for any 0 ≤ m ≤M − 1, {x� w̃m} can be
uniquely identified (up to a sign) from the STFT magnitude if
L < W ≤ N/2 and w is nowhere-vanishing. Union bound-
ing over all m, we deduce that almost all nowhere-vanishing
signals are such that {x� w̃m} can be uniquely identified up
to a sign for all 0 ≤ m ≤M − 1. Since for L < W , adjacent
sections overlap, the entire signal can be uniquely identified
up to a global sign.

Lemma 3.1. Consider two nowhere-vanishing signals x(a) 6≡
x(b) of length N which have the same STFT magnitude. For
each m, there exists signals g(m) and h(m) of lengths lgm
and lhm respectively such that

• x(a)� w̃m ≡ g(m) ?h(m) , x(b)� w̃m ≡ g(m) ? h̃(m)

• lgm + lhm − 1 = Tm − tm + 1

• g(m)[0] = 1, g(m)[lgm − 1] 6= 0, h(m)[0] 6= 0,
h(m)[lhm − 1] 6= 0

where h̃ is the flipped version of h .

Proof. In [10] (Lemma 2.1), it is shown that if two (≤ N)-
length signals have the same 2N -DFT magnitude, there ex-
ists signals g and h of lengths lg and lh with the aforemen-
tioned properties. Since the mth column of STFT magnitude
corresponds to N -DFT magnitude of a (≤ W )-length signal
(where W ≤ N/2), we can apply Lemma 2.1 from [10] to
each column of the STFT magnitude.
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Lemma 3.2. Almost all nowhere-vanishing signals x ∈ RN
are such that {x � w̃m} can be uniquely identified (up to a
sign) by the STFT magnitude, for any 0 ≤ m ≤ M − 1, if
L < W ≤ N/2.

Proof. Let us focus our attention on short-time sections m
and m+ 1 for a given m. Since the mth window starts at tm
and the (m+1)th window ends at Tm+1, the set of all signals
{x � w̃m,x � w̃m+1} can be mapped to a vector space of
dimension Tm+1−tm+1. We will show that the set of signals
{x�w̃m,x�w̃m+1} which cannot be uniquely identified by
the mth and (m + 1)th column of the STFT magnitude is a
manifold of dimension at most Tm+1− tm if L < W ≤ N/2.

Suppose {x(a)�w̃m,x(a)�w̃m+1} 6≡ {x(b)�w̃m,x(b)�
w̃m+1} have the same {|Yw[j, k]| : m ≤ j ≤ m + 1 & 0 ≤
k ≤ N − 1}. There can be three possible cases:

• x(a)�w̃m 6≡ x(b)�w̃m , x(a)�w̃m+1 ≡ x(b)�w̃m+1

• x(a)�w̃m ≡ x(b)�w̃m , x(a)�w̃m+1 6≡ x(b)�w̃m+1

• x(a)�w̃m 6≡ x(b)�w̃m , x(a)�w̃m+1 6≡ x(b)�w̃m+1.

We will provide the proof for the first case; the other two cases
can be proved using the same arguments.

From Lemma 3.1, we know that there exists signals g and
h such that

x(a) � w̃m ≡ g ? h & x(b) � w̃m ≡ g ? h̃. (2)

Note that lhm + lgm − 1 = Tm − tm + 1. Since we do not
know the values of lhm and lgm, we will consider all possible
values. For any lhm and lgm, the following statements hold.

The set of all signals x�w̃m+1 can be mapped to a vector
space of dimension Tm+1−tm+1+1. The choice of x�w̃m+1

fixes x� w̃m in the region of overlap, hence g ? h and g ? h̃
should satisfy the following equations:

n∑
i=0

h[i]g[n− tm − i] = w[mL− n]x[n] (3)

n∑
i=0

h[lhm − 1− i]g[n− tm − i] ≡ w[mL− n]x[n] (4)

for all tm+1 ≤ n ≤ Tm.
The system of equations in (3, 4) are bilinear in {g,h}.

For such systems, it is well known that {g,h} can be chosen
from a manifold of dimension at most glm + ghm − 1 − r,
where r is the number of independent bilinear equations [10,
28]. There are at least Tm − tm+1 + 2 independent bilinear
equations in (3, 4) if there is at least one overlapping location
(which is true for L < W ), which can be shown as follows:

The system of equations (3) decides the last Tm− tm+1+
1 entries of {g[1], ..., g[lgm − 1], h[1], ..., h[lhm − 1]} once
the remaining entries are chosen. However, (4) at n = Tm
essentially is h[0] = h[lhm−1], because of which h[0] is also

decided by the remaining entries. Hence, at least Tm−tm+1+
2 entries of {g,h} are decided. Hence {g,h}, or equivalently
{x � w̃m}, can be chosen from a manifold of dimension at
most (tm+1 − tm − 1).

Note that in (4), equivalent sign is used as the equality is
only up to a sign (the argument holds for both possible signs).
For each of the three aforementioned cases, the set is a mani-
fold of dimension at most (tm+1 − tm − 1).

Using a union bound, we deduce that the set of all signals
{x � w̃m,x � w̃m+1} which cannot be uniquely identified
from the mth and (m+ 1)th column of the STFT magnitude
is a manifold of dimension at most (Tm+1 − tm+1 + 1) +
(tm+1−tm−1) = (Tm+1−tm). Since the entries of x which
do not belong to the short-time sections m and m+ 1 can be
chosen from a vector space of dimension N − (Tm+1 − tm),
the set of all signals x for which {x�w̃m} cannot be uniquely
identified by the STFT magnitude is a manifold of dimension
at most N − 1 for any 0 ≤ m ≤M − 1.

4. RECOVERY ALGORITHM

The STFT phase retrieval problem (P) is a quadratically-
constrained problem. A technique, popularly known as
lifting, has enjoyed success in solving some quadratically-
constrained problems (for example, see [15, 16]). The steps
can be summarized as follows: (i) embed the problem in a
higher dimensional space using the transformation X = xxT ,
a process which converts the problem of recovering a signal
with quadratic constraints into a problem of recovering a
rank-one matrix with affine constraints (ii) relax the rank-one
constraint to obtain a convex program.

A convex program (Algorithm 1) to solve the STFT phase
retrieval problem was proposed in [26]. If the solution to the
convex program is a unique rank-one matrix, then it is also
the unique solution to the quadratically-constrained problem.
While the solution to the convex program need not be rank
one in general, many recent results in the compressed sens-
ing [24] and matrix completion [25] community suggest that
one can provide conditions which ensure that the convex pro-
gram has a unique rank one solution. In this section, we pro-
vide conditions on w, W and L which ensure that the convex
program always has a unique rank one solution.

Theorem 4.1. Algorithm 1 uniquely recovers (up to a global
sign) a nowhere-vanishing signal x from its STFT magnitude
if

1. L = 1, 2 ≤W ≤ N/2

2. w[0]w[1] 6= 0.

Proof. For all 0 ≤ m ≤M − 1, we can say the following:

N−1∑
k=0

|Yw[m, k]|2 = trace(

N−1∑
k=0

(fkf
T
k ) (X� (w̃mw̃T

m) )
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Algorithm 1 STFT Phase Retrieval Algorithm
Input: STFT magnitude measurements Y, w , W , L
Output: Signal x?

• Solve for X?

minimize trace(X) (R)

subject to |Yw[m, k]|2 = trace( fkf
T
k (X� (w̃mw̃T

m) )

for 0 ≤ m ≤M − 1 & 0 ≤ k ≤ N − 1

X < 0

where fk is the kth column of the N -DFT matrix.

• Return x?, where x?x
T
? is the best rank-one approxi-

mation of X?

= trace( (X�(w̃mw̃T
m) ) =

Tm∑
n=tm

X[n, n]w2[Tm−n]. (5)

Using Parseval’s theorem, (5) can be rewritten as

Tm∑
n=tm

X[n, n]w2[Tm − n] =

Tm∑
n=tm

x2[n]w2[Tm − n]. (6)

Similarly, considering the sum
∑N−1
k=0 ej2πk/N |Yw[m, k]|2,

we can say the following:

Tm−1∑
n=tm

X[n, n+ 1]w[Tm − n]w[Tm − n− 1]

=

Tm−1∑
n=tm

x[n]x[n+ 1]w[Tm − n]w[Tm − n− 1] (7)

For m = 1, (6) and (7) correspond to

w2[0]X[0, 0] = w2[0]x2[0]

which fixes X[0, 0] to x2[0] if w[0] 6= 0. For m = 2, (6) and
(7) result in

w2[0]X[1, 1] + w2[1]X[0, 0] = w2[0]x2[1] + w2[1]x2[0]

w[0]w[1]X[0, 1] = w[0]x[1]w[1]x[0]. (8)

If X[0, 0] is equal to x2[0], W > 1 and w[0]w[1] 6= 0, then
X[1, 1] and X[0, 1] equal x2[1] and x[0]x[1].

Applying this argument incrementally, (6) and (7) for
measurement m, with the help of the entries fixed by previ-
ous measurements, sets X[n−1, n−1] and X[n−2, n−1] to
x2[n− 1] and x[n− 2]x[n− 1] respectively, if w[0]w[1] 6= 0.

Hence, the diagonal and the first off-diagonal entries of
X are fixed by the STFT magnitude measurements. If the di-
agonal and the first off-diagonal entries of a matrix are sam-
pled from a rank-one matrix, there is precisely one positive
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Fig. 1. Probability of successful recovery of Algorithm 1 for
N = 32 for various choices of L and W (white region: suc-
cess with probability 1).

semidefinite completion of the matrix and that is the rank-one
completion [30].

In particular, since X < 0, (R) has only one feasible point,
given by {X, X[i, j] = x[i]x[j]: 0 ≤ i, j ≤ N − 1}. Hence,
the solution to (R) is a rank-one matrix xxT , from which the
true signal x can be recovered (up to a global sign) by a simple
decomposition if x is nowhere-vanishing.

5. NUMERICAL SIMULATIONS

In this section, we evaluate the probability of successful sig-
nal recovery of Algorithm 1. For N = 32, we vary both L and
W between 1 and N/2. For each L and W , we performed 100
simulations by randomly choosing a nowhere-vanishing sig-
nal x from an i.i.d Gaussian distribution and a window w with
unit entries, and recorded the number of times the algorithm
successfully recovered the underlying signal exactly (Fig. 1).

We observed that Algorithm 1 successfully recovers the
underlying signal with very high probability if 2L ≤ W ≤
N/2. The {L = N/4,W = N/2} case uses only six mea-
surements and Algorithm 1 managed to recover the under-
lying signal with very high probability, which, given the lim-
ited success of semidefinite relaxation-based algorithms in the
Fourier phase retrieval setup [29], we found surprising.

6. FUTURE WORK

Simulations strongly suggest that Theorem 4.1 can be gener-
alized to 2L ≤ W ≤ N/2. We leave this for future work.
Also, there is a sharp phase transition at 2L = W (Fig. 1),
i.e., recovery is successful with very high probability if 2L ≤
W and fails with very high probability if 2L > W . A theo-
retical analysis of this phase transition would be a very inter-
esting direction of future study.
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